skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qu, Z"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Virtual reality (VR) simulations have been adopted to provide controllable environments for running augmented reality (AR) experiments in diverse scenarios. However, insufficient research has explored the impact of AR applications on users, especially their attention patterns, and whether VR simulations accurately replicate these effects. In this work, we propose to analyze user attention patterns via eye tracking during XR usage. To represent applications that provide both helpful guidance and irrelevant information, we built a Sudoku Helper app that includes visual hints and potential distractions during the puzzle-solving period. We conducted two user studies with 19 different users each in AR and VR, in which we collected eye tracking data, conducted gaze-based analysis, and trained machine learning (ML) models to predict user attentional states and attention control ability. Our results show that the AR app had a statistically significant impact on enhancing attention by increasing the fixated proportion of time, while the VR app reduced fixated time and made the users less focused. Results indicate that there is a discrepancy between VR simulations and the AR experience. Our ML models achieve 99.3% and 96.3% accuracy in predicting user attention control ability in AR and VR, respectively. A noticeable performance drop when transferring models trained on one medium to the other further highlights the gap between the AR experience and the VR simulation of it. 
    more » « less
  2. We present a novel source attribution approach that incorporates satellite data into GEOS-Chem adjoint simulations to characterize the species-specific, regional, and sectoral contributions of daily emissions for 3 air pollutants: fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2). This approach is implemented for Washington, DC, first for 2011, to identify urban pollution sources, and again for 2016, to examine the pollution response to changes in anthropogenic emissions. In 2011, anthropogenic emissions contributed an estimated 263 (uncertainty: 130–444) PM2.5- and O3-attributable premature deaths and 1,120 (391–1795) NO2 attributable new pediatric asthma cases in DC. PM2.5 exposure was responsible for 90% of these premature deaths. On-road vehicle emissions contributed 51% of NO2-attributable new asthma cases and 23% of pollution-attributable premature deaths, making it the largest contributing individual sector to DC’s air pollution–related health burden. Regional emissions, originating from Maryland, Virginia, and Pennsylvania, were the most responsible for pollution-related health impacts in DC, contributing 57% of premature deaths impacts and 89% of asthma cases. Emissions from distant states contributed 34% more to PM2.5 exposure in the wintertime than in the summertime, occurring in parallel with strong wintertime westerlies and a reduced photochemical sink. Emission reductions between 2011 and 2016 resulted in health benefits of 76 (28–149) fewer pollution-attributable premature deaths and 227 (2–617) fewer NO2-attributable pediatric asthma cases. The largest sectors contributing to decreases in pollution-related premature deaths were energy generation units (26%) and on-road vehicles (20%). Decreases in NO2-attributable pediatric asthma cases were mostly due to emission reductions from on-road vehicles (63%). Emission reductions from energy generation units were found to impact PM2.5 more than O3, while on-road vehicle emission reductions impacted O3 proportionally more than PM2.5. This novel method is capable of capturing the sources of urban pollution at fine spatial and temporal scales and is applicable to many urban environments, globally. 
    more » « less
  3. We present the first measurement of cosmic-ray fluxes of Li 6 and Li 7 isotopes in the rigidity range from 1.9 to 25 GV. The measurements are based on 9.7 × 10 5 Li 6 and 1.04 × 10 6 Li 7 nuclei collected by the Alpha Magnetic Spectrometer on the International Space Station from May 2011 to October 2023. We observe that over the entire rigidity range the Li 6 and Li 7 fluxes exhibit nearly identical time variations and, above 4 GV , the time variations of Li 6 , Li 7 , He, Be, B, C, N, and O fluxes are identical. Above 7 GV , we find an identical rigidity dependence of the Li 6 and Li 7 fluxes. This shows that they are both produced by collisions of heavier cosmic-ray nuclei with the interstellar medium and, in particular, excludes the existence of a sizable primary component in the Li 7 flux. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  4. We report the properties of precision time structures of cosmic nuclei He, Li, Be, B, C, N, and O fluxes over an 11-year solar cycle from May 2011 to November 2022 in the rigidity range from 1.92 to 60.3 GV. The nuclei fluxes show similar but not identical time variations with amplitudes decreasing with increasing rigidity. In particular, below 3.64 GV the Li, Be, and B fluxes, and below 2.15 GV the C, N, and O fluxes, are significantly less affected by solar modulation than the He flux. We observe that these differences in solar modulation are linearly correlated with the differences in the spectral indices of the cosmic nuclei fluxes. This shows, in a model-independent way, that solar modulation of galactic cosmic nuclei depends on their spectral shape. In addition, solar modulation differences due to nuclei velocity dependence on the mass-to-charge ratio ( A / Z ) are not observed. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. Abstract We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$$\Delta L\sim 0.56$$ Δ L 0.56 ) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$$L\sim 5-7$$ L 5 7 at dusk, while a smaller subset exists at$$L\sim 8-12$$ L 8 12 at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$$L$$ L -shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$$\sim 1.45$$ 1.45 MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation. 
    more » « less
  6. Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of the deuteron ( D ) flux are presented. The measurements are based on 21 × 10 6 D nuclei in the rigidity range from 1.9 to 21 GV collected from May 2011 to April 2021. We observe that over the entire rigidity range the D flux exhibits nearly identical time variations with the p , He 3 , and He 4 fluxes. Above 4.5 GV, the D / He 4 flux ratio is time independent and its rigidity dependence is well described by a single power law R Δ with Δ D / He 4 = 0.108 ± 0.005 . This is in contrast with the He 3 / He 4 flux ratio for which we find Δ He 3 / He 4 = 0.289 ± 0.003 . Above 13 GV we find a nearly identical rigidity dependence of the D and p fluxes with a D / p flux ratio of 0.027 ± 0.001 . These unexpected observations indicate that cosmic deuterons have a sizable primarylike component. With a method independent of cosmic ray propagation, we obtain the primary component of the D flux equal to 9.4 ± 0.5 % of the He 4 flux and the secondary component of the D flux equal to 58 ± 5 % of the He 3 flux. Published by the American Physical Society2024 
    more » « less
  7. null (Ed.)
    Abstract The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93 ∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (T orbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with $$\Delta $$ Δ E/E < 40% and a fluxgate magnetometer (FGM) on a ∼72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5 Hz Nyquist (nominally) with <0.3 nT/sqrt(Hz) noise at 1 Hz. The spinning satellites (T spin $$\,\sim $$ ∼ 3 s) are equipped with magnetorquers (air coils) that permit spin-up or -down and reorientation maneuvers. Using those, the spin axis is placed normal to the orbit plane (nominally), allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250 keV – 5 MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018 and launched by the ELaNa XVIII program on a Delta II rocket (with IceSatII as the primary). Mission operations are currently funded by NASA. Working under experienced UCLA mentors, with advice from The Aerospace Corporation and NASA personnel, more than 250 undergraduates have matured the ELFIN implementation strategy; developed the instruments, satellite, and ground systems and operate the two satellites. ELFIN’s already high potential for cutting-edge science return is compounded by concurrent equatorial Heliophysics missions (THEMIS, Arase, Van Allen Probes, MMS) and ground stations. ELFIN’s integrated data analysis approach, rapid dissemination strategies via the SPace Environment Data Analysis System (SPEDAS), and data coordination with the Heliophysics/Geospace System Observatory (H/GSO) optimize science yield, enabling the widest community benefits. Several storm-time events have already been captured and are presented herein to demonstrate ELFIN’s data analysis methods and potential. These form the basis of on-going studies to resolve the primary mission science objective. Broad energy precipitation events, precipitation bands, and microbursts, clearly seen both at dawn and dusk, extend from tens of keV to >1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective. 
    more » « less